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Lecture 29: Bipartite Graphs

Bipartite Graphs. In this section, we briefly discuss bipartite graphs. First, we
characterize them. For a given bipartite graph, we provide a bound for the size of its
set of edges.

Definition 1. Let G be a simple graph. We say that G is bipartite if V (G) = X ∪ Y
for some disjoint sets of vertices X and Y such that every edge of G connects a vertex
of X with a vertex of Y .

With notation as in the previous definition, we say that G is a bipartite graph on
the parts X and Y . The parts of a bipartite graph are often called color classes ; this
terminology will be justified in coming lectures when we generalize bipartite graphs in
our discussion of graph coloring.

Example 2. For m,n ∈ N, the graph G with

V (G) = [m + n] and E(G) = {ij | i ∈ [m] and j ∈ [m + n] \ [m]}

is clearly a bipartite graph on the (disjoint) parts [m] and [m+ n] \ [m]. This graph is
called the complete bipartite graph on the parts [m] and [m+n]\ [m], and it is denoted
by Km,n.

Example 3. Let Cn by the cyclic graph of length n. Suppose that n is even and
write n = 2k for some k ∈ N with k ≥ 2. Labeling the vertices of Cn by 1, 2, . . . , 2k
so that v1v2 . . . v2kv1 is the cycle of Cn, one can see that X = {1, 3, . . . , 2k − 1} and
Y = {2, 4, . . . , 2k} partition V (G) in such a way that Cn is a bipartite graph on the
parts X and Y . As a consequence of our next result, Cn is not bipartite when n is odd.

We proceed to characterize bipartite graphs.

Theorem 4. For a simple connected graph G, the following conditions are equivalent.

(a) G is bipartite.

(b) Every cycle of G (if some) has even length.
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Proof. (a) ⇒ (b): Assume that G is bipartite on the parts X and Y . Suppose, by way
of contradiction, that G has a cycle of odd length, namely, C := v1v2 . . . v2n+1v1. We
can assume, without loss of generality, that v1 ∈ X. Since no two vertices of X are
adjacent, v2 ∈ Y , and a straightforward inductive argument shows that v2k+1 ∈ X for
every k ∈ J0, nK and v2k ∈ Y for every k ∈ [n]. However, the fact that both v1 and
v2n+1 belong to X contradicts that no two vertices in A are adjacent.

(b) ⇒ (a): Now suppose that every cycle of G (if some) has even length. Fix
v0 ∈ V (G), and set the color of v0 to red. For every v ∈ V (G)\{v0}, set its color to red
(resp., blue) if the distance from v0 to v is even (resp., odd). The distance between two
vertices of G is the length of a minimum-length path connecting them. Let R and B be
the sets of red and blue vertices of G, respectively. We claim that G is bipartite on the
parts R and B. Suppose, towards a contradiction, that this is not the case. Assume
that there are two vertices v, w ∈ R such that vw ∈ E(G). Let Pv := v0v1v2 . . . vk−1v
be a minimum-length path from v0 to v and let Pw := v0w1w2 . . . w`−1w be a minimum-
length path from v0 to w. Then P := v0v1v2 . . . vk−1vww`−1 . . . w2w1v0 is a closed walk
in G of odd length because k and ` have the same parity (they are both even) and,
besides the edges in these two paths, P contains the edge vw. Observe now that if we
drop from P all the edges that belong simultaneously to the paths Pv and Pw, then
we obtain finitely many edge-disjoint cycles whose lengths add up to an odd number.
Hence one of such cycles must have odd length, which is a contradiction. If we assume
that two vertices of B are adjacent, then we can arrive to a contradiction in a similar
manner. �

Corollary 5. Every forest is bipartite.

Unlike trees, the number of edges of a bipartite graph is not completely determined
by the number of vertices. In fact, the number of edges is not even determined by the
sizes of the two color classes (unless the bipartite graph is complete). However, we can
find a tight upper bound for the number of edges in terms of the number of vertices.

Proposition 6. Let G be a simple bipartite graph on n vertices. Then |E(G)| ≤ n2

4

if n is even and |E(G)| ≤ n2−1
4

if n is odd.

Proof. Suppose that G is bipartite on the parts X and Y , and set x = |X| and y = |Y |.
It is clear that |E(G)| ≤ xy = x(n− x). Therefore E(G) is at most

Mn := max{xn− x2 | x ∈ J0, nK}.

However, xn− x2 is a concave-down parabola with vertex at x = n/2. So if n = 2k for
some k ∈ N0, then

Mn = M2k =
2k

2
(2k − 2k

2
) = k2 =

n2

4
.
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On the other hand, if n = 2k + 1 for some k ∈ N0, then

Mn = M2k+1 =
⌊2k + 1

2

⌋(
2k + 1−

⌊2k + 1

2

⌋)
= k(k + 1) =

n− 1

2
· n + 1

2
=

n2 − 1

4
,

which concludes the proof. �

Practice Exercises

Exercise 1. [1, Exercise 11.3] In a round robin tournament there are 2n players. Prove
that, after the completion of the second round, we can split the competitors into two
groups of size n each so that no two competitors in the same group have played with
each other yet.

Exercise 2. Take a standard chessboard and remove the top left square and the bottom
right square. Prove that we cannot cover (without overlapping) the given board using
1× 2 dominoes.
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